
Congestion avoidance for collective communication in PCIe-based systems
Heehoon Kim, Junyeol Ryu, Jaejin Lee. TCCL: Discovering Better Communication Paths for PCIe GPU Clusters. ASPLOS ‘24. [link]

Utilizing compute and memory of GPUs and CPUs for large-model training
Junyeol Ryu*, Yujin Jeong*, Daeyoung Park, Jinpyo Kim, Heehoon Kim, Jaejin Lee. SPipe: Hybrid GPU and CPU Pipeline for Training LLMs under
Memory Pressure. Under submission to OSDI ‘25. [link]

Reinforcement learning-based resource management
Junyeol Ryu, Jeongyoon Eo. Network Contention-Aware Cluster Scheduling with Reinforcement Learning. ICPADS ‘23. [link]

Ring algorithm of AllGather for four GPUs

0
1

2
3

GPU0 GPU1

GPU3 GPU2

0

1
2

3

0
1

2
3

3

0

1

2

Collective communication is essential
for parallelism in training AI models!

Ring example of a PCIe-based system
GPU GPU GPU GPU

CPU CPU
Link bandwidth: ~13GB/s
Achieved bandwidth: ~4GB/s

GPU communication libraries exbibit
low performance for PCIe-based systems

Congestion

Existing libraries can neither
identify nor avoid congestion!

Key findings from my analysis of NCCL
• Existing libraries find paths based solely on

the bandwidths of individual links
• However, multiple transfers are executed

simultaneously across the PCIe host bridge
during collective communication

TCCL Profiler Application
Transfer set: T

TCCL Pathfinder
Bandwidth: B(T)

G0 G1
G2 M0

(1) Intra-node Ring

Collective
Communication

Creating
Communicator

TCCL Runtime

Pathfinding
Results

G1,2

(2) Linear Chain

G2,0 G2,1 M3,1

(3) Inter-node Ring

G1,2 G2,0 G2,1 M3,1
Node 1

Node 1 Node 2 Node 3

G4,0G2,1 M3,1

Me
rg

e
ch

ain
s

Overview of TCCL

Insight 1: Profiler specialized in measuring simultaneous multiple transfers Result:
• Up to 𝟐. 𝟎𝟕× speedup for collective

communication
• Up to 𝟏. 𝟏𝟏× speedup for training AI

models

Further research directions
• Extending beyond ring algorithm

(e.g., double binary tree, all-to-all)
• Overlapping dependent communication

and computation by decomposition
• Utilizing multi-path opportunities

Insight 2: Enumerate all possible paths while
minimizing the search time for performant path

Parallelism + offloading is essential
for training under memory pressure!

Model

!!
!"
!#
!$
!%
!&
!'
!(

• Stage’s memory should not exceed GPU memory
• Multiple stages are assigned to each GPU

Bubble Forward	pass Backward	pass

Time

Parameters	transfer
(CPU	to	GPU)

Gradients	transfer
(GPU	to	CPU)

Optimization	step
(CPU)

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

2 30 1 2 3 0 1

2 30 1 2 3 0 1

2 30 1 2 3 0 1

2 30 1 2 3 0 1

%!%"

%# %$

%%%&

%' %(

&! &" '" '!

!! !" '# '$

&% && '& '%

&(&' '' '(

&!

&$

&%

&(

𝑝! : Stage 𝑆! ’s prefetch of parameters
𝑔! : Stage 𝑆! ’s offload of gradients
𝑜! : Stage 𝑆! ’s CPU optimization steps

𝑆%, 𝑆& 𝐺𝑃𝑈%

𝑆', 𝑆(𝐺𝑃𝑈'

𝑆), 𝑆* 𝐺𝑃𝑈)

𝑆+, 𝑆, 𝐺𝑃𝑈+

Stages are fetched to GPU memory and gradients are offloaded to
CPU memory in an overlapped manner

Optimizer updates the stages’
parameters on the CPU

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 1 2 3 4 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 1 2 3 4 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 1 2 3 4 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

&!,#

&!,$

&%,#

&%,$

&&,#

&&,$

&',#

&',$

&(,#

&(,$

&),#

&),$

&#,#

&#,$

&$,#

&$,$

'!,#

'!,$

'%,#

'%,$

'&,#

'&,$

'',#

'',$

'(,#

'(,$

'),#

'),$

'#,#

'#,$

'$,#

'$,$

&$

&#

&)

&(&!

&%

&&

&' (!,#

(!,$

(%,#

(%,$

(&,#

(&,$

(',#

(',$

((,#

((,$

(),#

(),$

(#,#

(#,$

($,#

($,$

Bubble Forward	pass Backward	pass

Time

Parameters	transfer
(CPU	to	GPU)

Gradients	transfer
(GPU	to	CPU)

Optimization	step
(CPU)

Insight 1: Shared
parameters on CPU
memory allows
decoupling a stage’s
forward/backward pass
onto different GPUs

Insight 2: CPU optimizer steps can
execute in parallel with GPU’s
forward/backward pass

Result: Avg. 𝟏. 𝟐𝟔× speedup for
training LLaMA2 models (~100B)
using ~32 V100 32GB GPUs

Further research directions:
Hybrid parallelism (e.g., PP+TP) +
offloading technique

Mitigating network congestion is essential when
scheduling distributed jobs in GPU clusters!

Node Node

… … Distributed
job

Research summary - Junyeol Ryu jyeol.ryu@gmail.com
https://junyeol.me/about.html

Co-location of distributed jobs

Insight: Co-locating
jobs yields varying
performance effects
due to model type,
parallelism, placement

However, it is infeasible
to try all co-location
options on every new
job request

Reinforcement learning (RL)

• Repetitive decisions leave abundant training data to RL algorithm
• Reward reflects complex objectives (e.g., min. congestion, max GPU utilization)
• Adapt to shifting or unseen circumstances by explore-and-exploit

N
od

es

GPUs per node

Candidate Job Demands

Job Type 1 Job Type 2 Job Type 3

GPUs per node

Scheduled Job Placement

Scheduled Jobs

Fixed state design as input to NN-based RL algorithm • Schedule
• Migration
• Preemption• Penalize increase in congestion

• Incentivize increase in GPU utilization

Insight: Simple heuristics
can effectively assist RL
(e.g., selective multiplexing
with greedy approach)

Agent

Env

②
Action

① State

③
Reward

⊕

Result:
Up to 𝟏𝟖. 𝟐%
reduction for
average job
completion time

Challenge 1: Bubbles
from GPU pipeline

Challenge 2: Bubbles from
un-overlapped optimizer step

https://dl.acm.org/doi/10.1145/3620666.3651362
https://junyeol.me/assets/attachments/pubs/SPipe_OSDI25_merged.pdf
https://ieeexplore.ieee.org/document/10475947
https://junyeol.me/assets/attachments/nccl_tech_report.pdf
mailto:jyeol.ryu@gmail.com
https://junyeol.me/about.html

