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Ring algorithm of AllGather for four GPUs
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Collective communication is essential 
for parallelism in training AI models!

Ring example of a PCIe-based system
GPU GPU GPU GPU

CPU CPU
Link bandwidth: ~13GB/s
Achieved bandwidth: ~4GB/s

GPU communication libraries exbibit 
low performance for PCIe-based systems

Congestion

Existing libraries can neither 
identify nor avoid congestion!

Key findings from my analysis of NCCL
• Existing libraries find paths based solely on 

the bandwidths of individual links
• However, multiple transfers are executed 

simultaneously across the PCIe host bridge 
during collective communication 

TCCL Profiler Application
Transfer set: T
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Overview of TCCL

Insight 1: Profiler specialized in measuring simultaneous multiple transfers Result:
• Up to 𝟐. 𝟎𝟕× speedup for collective 

communication
• Up to 𝟏. 𝟏𝟏× speedup for training AI 

models

Further research directions
• Extending beyond ring algorithm 

(e.g., double binary tree, all-to-all) 
• Overlapping dependent communication 

and computation by decomposition
• Utilizing multi-path opportunities

Insight 2: Enumerate all possible paths while 
minimizing the search time for performant path

Parallelism + offloading is essential 
for training under memory pressure! 

Model
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• Stage’s memory should not exceed GPU memory
• Multiple stages are assigned to each GPU

Bubble Forward	pass Backward	pass

Time

Parameters	transfer
(CPU	to	GPU)

Gradients	transfer
(GPU	to	CPU)

Optimization	step
(CPU)

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

2 30 1 2 3 0 1

2 30 1 2 3 0 1

2 30 1 2 3 0 1

2 30 1 2 3 0 1

%!%"

%# %$

%%%&

%' %(

&! &" '" '!

!! !" '# '$

&% && '& '%

&( &' '' '(

&!

&$

&%

&(

𝑝! : Stage 𝑆! ’s prefetch of parameters
𝑔! : Stage 𝑆! ’s offload of gradients
𝑜! : Stage 𝑆! ’s CPU optimization steps
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Stages are fetched to GPU memory and gradients are offloaded to 
CPU memory in an overlapped manner

Optimizer updates the stages’ 
parameters on the CPU
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Bubble Forward	pass Backward	pass

Time

Parameters	transfer
(CPU	to	GPU)

Gradients	transfer
(GPU	to	CPU)

Optimization	step
(CPU)

Insight 1: Shared 
parameters on CPU 
memory allows 
decoupling a stage’s 
forward/backward pass 
onto different GPUs

Insight 2: CPU optimizer steps can 
execute in parallel with GPU’s 
forward/backward pass

Result: Avg. 𝟏. 𝟐𝟔× speedup for 
training LLaMA2 models (~100B) 
using ~32 V100 32GB GPUs

Further research directions: 
Hybrid parallelism (e.g., PP+TP) + 
offloading technique

Mitigating network congestion is essential when 
scheduling distributed jobs in GPU clusters!
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… … Distributed 
job

Research summary - Junyeol Ryu jyeol.ryu@gmail.com
https://junyeol.me/about.html

Co-location of distributed jobs

Insight: Co-locating 
jobs yields varying 
performance effects 
due to model type, 
parallelism, placement

However, it is infeasible 
to try all co-location 
options on every new 
job request

Reinforcement learning (RL)

• Repetitive decisions leave abundant training data to RL algorithm
• Reward reflects complex objectives (e.g., min. congestion, max GPU utilization)
• Adapt to shifting or unseen circumstances by explore-and-exploit
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Candidate Job Demands

Job Type 1 Job Type 2 Job Type 3

GPUs per node

Scheduled Job Placement

Scheduled Jobs

Fixed state design as input to NN-based RL algorithm • Schedule
• Migration
• Preemption• Penalize increase in congestion

• Incentivize increase in GPU utilization

Insight: Simple heuristics 
can effectively assist RL 
(e.g., selective multiplexing 
with greedy approach) 
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Result:
Up to 𝟏𝟖. 𝟐%
reduction for 
average job 
completion time

Challenge 1: Bubbles 
from GPU pipeline

Challenge 2: Bubbles from 
un-overlapped optimizer step
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