
SysX: System for Training under Memory Constraints

Junyeol Ryu∗

Seoul National University
Yujin Jeong∗

Seoul National University
Daeyoung Park

Seoul National University

Jinpyo Kim
Seoul National University

Heehoon Kim
Seoul National University

Jaejin Lee
Seoul National University

Abstract
Training large language models (LLMs) with limited com-
puting resources is challenging because of their immense
memory space requirements. In this paper, we specifically
focus on the scenarios where we have insufficient aggregate
GPU memory to store all model states but explore pipeline
parallelism and offloading across all system resources to train
the model. In this context, SysX presents a hybrid GPU and
CPU pipelining mechanism that consists of two pipelines: a
GPU pipeline to reduce the bubbles in conventional pipeline
parallelism and a GPU-CPU pipeline to alleviate data transfer
overhead and CPU bottlenecks in offloading data and com-
puting. We evaluate SysX for training LLMs of various sizes
with diverse configurations in practice. The result indicates
that SysX outperforms the state-of-the-art by 1.26×. We plan
to make SysX publicly available to broaden the accessibility
of large-scale model training.

1 Introduction

Large language models (LLMs) [3, 15, 40, 46, 56] have scaled
dramatically to trillion parameters and are very successful for
various downstream tasks. However, such an overwhelming
number of parameters requires large memory space during
training. State-of-the-art models, such as LLaMA [27, 48, 49]
and OPT [54], require a memory footprint on a terabyte-scale.
They are typically trained with a supercomputer-scale cluster
in a data center [12, 41, 47].

The cost and resources for training an LLM are highly chal-
lenging for many academic institutions and startups because
they typically rely on small GPU clusters or small-scale cloud
services. For example, a 0.1 trillion parameter model requires
1.83 terabytes to store its states during training [42], which far
exceeds the aggregate GPU memory of a small GPU cluster
with a few nodes. Thus, developing a technique that efficiently
trains large models with limited resources can significantly
broaden the accessibility of LLMs.

∗Equal contribution

A practical approach to mitigating the memory requirement
is scale-out techniques, such as model parallelism [12,41,47],
to distribute model training across multiple GPUs. Among
others, pipeline parallelism [7, 12] partitions the model into
different stages and assigns the stages to GPUs. A mini-batch
is divided into smaller micro-batches and executed across the
pipeline stages. It requires only peer-to-peer (P2P) commu-
nication to transfer activations between GPUs, thereby mini-
mizing communication overhead. However, it also introduces
inefficiencies due to GPU idle times, referred to as pipeline
bubbles. It may lead to significant system under-utilization
and necessitate sophisticated pipeline scheduling to reduce
them [20, 23, 30–32].

Another widely-used approach to alleviating the memory
requirement is offloading [1, 10, 11, 14, 19, 22, 34, 44, 45]. The
memory capacity is extended to non-GPU memory (e.g., the
CPU main memory) to allow larger model training. Only the
minimum amount of data required for the current operation is
fetched and placed in the GPU memory (e.g., layer parameters
are fetched on demand just before the computation for the
layer). After performing the operation, the fetched data are
freed, and newly generated data by the operation are offloaded
to the non-GPU memory (e.g., gradients of the layer are stored
in the CPU memory after the layer’s backward pass). Recent
approaches even offload some computational tasks (e.g., opti-
mization steps) to the CPU to further exploit heterogeneous
resources [8, 26, 44]. However, these approaches introduce
data transfer overhead between the GPU and CPU. In addi-
tion, the low computational capacity of the CPU may become
a performance bottleneck.

To this end, this paper proposes SysX, a hybrid GPU-CPU
pipeline for training LLMs under memory pressure. We specif-
ically focus on the scenarios where we have insufficient aggre-
gate GPU memory to store all model states but explore the use
of model parallelism and offloading together across all system
resources to train the model by any means. In this context,
SysX offers an efficient solution through two pipelines: GPU
pipeline and GPU-CPU pipeline. The GPU pipeline reduces
the bubbles introduced in conventional pipeline parallelism.

1

The GPU-CPU pipeline hides the data transfer overhead be-
tween the CPU and GPUs and alleviates the performance
bottleneck caused by the slower CPU when offloading data
and computing.

SysX’s GPU pipeline presents a decoupled pass assign-
ment, which assigns the forward and backward passes of the
same stage to different GPUs for better pipeline scheduling.
Such mechanism is facilitated by storing the model param-
eters on the CPU’s shared memory (shmem) and exploiting
activation recomputation [5,13, 17, 18]. Moreover, SysX in-
troduces fine-grained stage partitioning to further eliminate
the bubbles due to the gap in execution time between the
forward and backward passes and optimizes the communica-
tion schedule for activation checkpoints to hide the additional
communication overhead between the GPUs.

SysX’s GPU-CPU pipeline presents a asynchronous CPU
optimizer, which executes the optimization steps in parallel
with the GPU pipeline, thereby overlapping and hiding the
CPU optimizer overhead. This mechanism is enabled by by-
passing optimizer synchronization [9, 38, 39] and shifting the
numerical validation as a post-step process while guarantee-
ing correctness through a roll-back mechanism.

The major contributions of SysX are summarized as fol-
lows:

• We propose SysX, a hybrid GPU-CPU pipelining mech-
anism that efficiently leverages offloading and achieves
high utilization of both GPUs and the CPU when training
LLMs under memory pressure.

• We compare SysX against the state-of-the-art LLM
pipelining mechanisms with offloading, Mobius [8] and
Megatron [32], on an eight node cluster with 32 GPUs
by training LLaMA-2 models [49] with various model
sizes and batch sizes. SysX outperforms these methods
1.26× and 1.51× on average, respectively.

• We will make SysX publicly available after publication
to foster research and expand the accessibility of LLMs.

2 Background and Related Work

This section introduces pipeline parallelism and its techniques
to train language models under GPU memory pressure.

2.1 Pipeline Parallelism
Pipeline parallelism is a type of model parallelism [12,41,47]
that trains large models on multiple GPUs. It partitions a
model into sequential groups of layers called stages and as-
signs the stages to GPUs. It divides a mini-batch into smaller
micro-batches and executes them in a pipelined manner across
these stages.

Suppose a model is partitioned into Ns stages, and a mini-
batch is divided into Nm micro-batches. We denote the ith

Bubble Forward	pass Backward	pass

Time

𝐺𝑃𝑈!
𝐺𝑃𝑈"

𝐺𝑃𝑈#
𝐺𝑃𝑈$

𝑓!! 𝑓!" 𝑓!# 𝑓!$

𝑓"! 𝑓"" 𝑓"# 𝑓"$

𝑓#! 𝑓#" 𝑓## 𝑓#$

𝑓$! 𝑓$" 𝑓$# 𝑓$$ 𝑏$! 𝑏$" 𝑏$# 𝑏$$
𝑏#! 𝑏#" 𝑏## 𝑏#$

𝑏"! 𝑏"" 𝑏"# 𝑏"$
𝑏!! 𝑏!" 𝑏!# 𝑏!$

(a) GPipe

𝐺𝑃𝑈!
𝐺𝑃𝑈"

𝐺𝑃𝑈#
𝐺𝑃𝑈$

𝑓!! 𝑓!" 𝑓!# 𝑓!$

𝑓"! 𝑓"" 𝑓"#

𝑓#! 𝑓#"

𝑓$! 𝑏$! 𝑏$" 𝑏$# 𝑏$$
𝑏#! 𝑏#" 𝑏## 𝑏#$

𝑏"! 𝑏"" 𝑏"# 𝑏"$
𝑏!! 𝑏!" 𝑏!# 𝑏!$

𝑓## 𝑓#$

𝑓$" 𝑓$# 𝑓$$

𝑓"$

(b) DAPPLE

Figure 1: Different pipeline schedules with four GPUs. GPUi

denotes the ith GPU. f j
i and b j

i denote the ith stage’s for-
ward/backward pass on the jth micro-batch, respectively.
Note that a backward pass has twice the workload than a
forward pass.

(0 ≤ i < Ns) stage as Si and jth (0 ≤ j < Nm) micro-batch as
m j. We denote the forward and backward passes of Si for m j

as f j
i and b j

i , respectively. For convenience, we denote the set
of forward passes f j

i for all m j as fi. Similarly, bi denotes the
set of backward passes b j

i for all m j.
Figure 1(a) illustrates an AFAB (all forward, all back-

ward) schedule of GPipe [12] with Ng = 4 GPUs, Ns = 4
stages, and Nm = 4 micro-batches. Thus, it has f j

i and b j
i for

i ∈ {0,1,2,3} and j ∈ {0,1,2,3}. GPipe first pipelines the
forward passes of all micro-batches, followed by the back-
ward passes of all micro-batches.

A pipeline schedule typically introduces idle times on
GPUs. We call them to as bubbles. Suppose the forward
and backward passes take Tf and Tb time, respectively. Note
that there are two kinds of bubbles in GPipe. The forward
pass causes one (the time taken by the bubble is Tf), and the
backward pass causes the other (the time taken by the bubble
is Tb). Then, the time consumed by bubbles, Tbbs, in GPipe’s
pipeline on a GPU is formulated as follows:

Tbbs = Tf · (Ng −1)+Tb · (Ng −1). (1)

We define bubble ratio as the idle time consumed by bubbles
divided by the overall execution time Toverall of the pipeline
on a GPU in Figure 1(a):

Toverall = Tf · (Nm +Ng −1)+Tb · (Nm +Ng −1). (2)

Thus, GPipe has a bubble ratio:

Tbbs
Toverall

=
Tf · (Ng −1)+Tb · (Ng −1)

Tf · (Nm +Ng −1)+Tb · (Nm +Ng −1)
. (3)

DAPPLE [7] in Figure 1(b) presents a 1F1B (one forward,
one backward) schedule, where each GPU alternates between
forward and backward passes of different micro-batches. It

2

Bubble Forward	pass Backward	pass

Time

Parameters	transfer
(CPU	to	GPU)

Gradients	transfer
(GPU	to	CPU)

Optimization	step
(CPU)

𝐺𝑃𝑈!

𝐺𝑃𝑈"

𝐺𝑃𝑈#

𝐺𝑃𝑈$

!!"							!!#							!!$!!%	 !""							!"#								!"$!"%				

!#"							!##							!#$!#%				!&"								!&#							!&$!&%				

!'"							!'#								!'$!'%				 !$"							!$#							!$$!$%				

!%"							!%#								!%$!%%				!("							!(#							!($!(%				

#"#!

#& ##

#$#'

#(#%

$" $! $" %! %"

!! !" $# %& %#

$$ $' $$ %' %$

$% $($% %(%%

		&""	&"#	&"$	&"%		&!"	&!#	&!$	&!%

	&#"	&##	&#$	&#%	&&"	&&#	&&$	&&%

	##$		##!		###		##%	&'"	&'#	&'$	&'%

	&%"	&%#	&%$	&%% 	&("	&(#	&($	&(%

Figure 2: Mobius pipeline schedule with four GPUs. GPUi denotes the ith GPU. f j
i and b j

i denote the ith stage’s forward/backward
pass on the jth micro-batch. Note that a backward pass has twice the workload than a forward pass. Two colors distinguish each
forward/backward pass to indicate that it belongs to a different stage assigned to the same GPU. For example, GPU0’s forward
passes on stage S0 and S4 are colored blue and sky blue. pi and gi denote CPU to GPU parameters transfer and GPU to CPU
gradients transfer of stage Si, respectively. oi denotes the optimization step of stage Si executed on the CPU.

reduces the peak activation memory usage of a stage from ≤
Nm ·Ma to Ng ·Ma by releasing activations as early as possible,
where Ma is the memory required for all activations of a single
micro-batch for a stage. The reduced activation memory usage
enabled by a different pipeline schedule allows a larger Nm
with the same GPU memory space. However, DAPPLE has
an identical bubble ratio to GPipe.

A high bubble ratio reduces pipeline utilization. To reduce
the bubble ratio, one can simply increase the number of micro-
batches Nm, thereby increasing Toverall. However, achieving
a sufficiently large Nm (e.g., Nm ≥ 4Ng as suggested in [12])
often introduces inefficiencies due to two key factors. One
is that models typically have a practical upper limit on the
mini-batch size, beyond which convergence is negatively af-
fected [2, 6, 51–53]. The other is that increasing Nm reduces
the micro-batch size for a given mini-batch size, compromis-
ing GPU computational efficiency [20].

Coupled pass assignment. On the other hand, reducing bub-
bles to decrease Tbbs is challenging. In both GPipe and DAP-
PLE, the same GPU is responsible for both the forward and
backward passes f j

i and b j
i of the same stage Si for micro-

batch m j. This creates bubbles at the beginning of the back-
ward pass, as the backward pass proceeds in the reverse order
of stages of the forward pass. We define the assignment of
the same GPU to both f j

i and b j
i as coupled pass assignment.

Almost all existing pipelines adhere to the coupled pass as-
signment for three key reasons. First, both f j

i and b j
i use Si’s

parameters Ψi. Second, b j
i reuses the activations a j

i generated
by f j

i . Finally and more critically, Ψi and a j
i are stored in the

GPU memory.

This paper reexamines the coupled pass assignment in of-
floading scenarios when pipeline parallelism uses non-GPU
memory to alleviate GPU memory pressure. It focuses on
opportunities to reduce bubbles, improving the bubble ratio
to increase performance.

2.2 Pipeline Parallelism with Offloading
As model sizes continue to grow, the increased memory space
requirement results in GPU memory pressure. As a rem-
edy, pipeline parallelism can leverage memory-efficient tech-
niques, such as offloading and activation recomputation.

Offloading [1, 10, 11, 14, 19, 22, 34, 44, 45] is a technique
to use non-GPU memory (e.g., the CPU main memory) to
store model states (e.g., parameters, gradients, and optimizer
states) and residual states (e.g., activations) during training.

Activation recomputation [5, 13, 17, 18] reduces activation
memory usage by recomputing the activations in the back-
ward pass instead of storing them in the forward pass and
keeping them until the backward pass. Only a subset of activa-
tions, or checkpoint, is stored in the forward pass and used to
recompute all activations before calculating the gradients in
the backward pass. Large models such as Turing-NLG 17.2B
and GPT-3 175B were trained using activation recomputa-
tion [42].

Mobius [8] is a state-of-the-art pipelining mechanism that
uses offloading. It introduces an interleaved AFAB sched-
ule, in which the stages of GPipe are further subdivided into
smaller stages to reduce the memory space requirements of
each stage. Along with assigning multiple stages per GPU, all
data are stored in the CPU memory, with only the minimum
amount of data required for the current stage fetched and
placed in the GPU memory. Their key idea for minimizing
the overhead of accessing non-GPU memory is to prefetch
the data required for the next stage in an overlapped manner
with the computation of the current stage. In addition, it ex-
ploits activation recomputation when training large models to
reduce the data transfer overhead.

Consider Figure 2, which illustrates the pipeline schedule
of Mobius with Ng = 4 GPUs, Ns = 8 stages, and Nm = 4
micro-batches. Thus, it has f j

i and b j
i for i ∈ {0, · · · ,7} and

j ∈ {0, · · · ,3}. Stage S0,4, S1,5, S2,6, and S3,7 are mapped to
GPU0, GPU1, GPU2, and GPU3, respectively. Mobius first

3

pipelines the forward passes of all micro-batches (f0−3) for
the first stage in each GPU (S0−3), followed by that (f4−7) for
the second stage in each GPU (S4−7). Then, it pipelines the
backward passes of all micro-batches (b4−7) for the second
stage in each GPU (S4−7), followed by that (b0−3) for the first
stage in each GPU (S0−3).

Mobius stores all stages in the CPU memory. Hence, it
transfers a copy of stage’s parameters from the CPU memory
to GPU memory before executing it, and frees this copy af-
ter finishing the stages’ execution on all micro-batches. We
denote the CPU to GPU transfer of stage Si’s parameters
copy as pi. Similarly, it transfers a stage’s gradients, accu-
mulated across all micro-batches, from the GPU memory to
CPU memory after finishing the stage’s backward passes on
all micro-batches. We denote the GPU to CPU transfer of Si’s
gradients as gi. We assume training with activation recompu-
tation, so activations are not transferred between GPU and
CPU in Figure 2. Optimization steps, with oi denoting the
CPU’s optimization step of Si, are processed by the CPU after
the pipeline flush, as explained in detail in Section 2.3.

Decoupled pass assignment. Mobius also adheres to the cou-
pled pass assignment (Section 2.1). In Mobius, both f j

i and
b j

i use Si’s parameters Ψi. However, with activation recom-
putation, b j

i does not reuse the activations a j
i generated by

f j
i but instead recomputes them during the backward pass.

More critically, Ψi and a j
i (if it exists) are not stored in the

GPU memory but in the CPU memory. In a nutshell, pipeline
parallelism with offloading indicates that the forward and
backward passes for the same stage no longer need to be as-
signed to the same GPU but can be decoupled. Based on this
observation, we investigate a new mechanism to improve the
bubble ratio for pipeline parallelism with offloading.

2.3 Hybrid GPU-CPU Training
Pipeline parallelism with offloading stores optimizer states in
non-GPU memory, along with parameters and gradients. Mo-
bius leverages a CPU-based optimizer, similar to DeepSpeed
CPU Adam [44], to update parameters directly on the CPU.
Such a mechanism to exploit both GPUs and CPUs is called
hybrid GPU-CPU training [25, 26]. Executing optimization
steps on the CPU is crucial when training under GPU mem-
ory pressure, as optimizer states are often significantly larger
than other model states [21, 26, 42]. For instance, in mixed-
precision training with Adam, the memory space required for
optimizer states is ×8 that of the parameters.

Consider the green squares of Figure 2, which illustrates
Mobius’s optimization steps on the CPU. It introduces ineffi-
ciencies because they begin synchronously across all GPUs
and do not overlap with the forward and backward pass ex-
ecution on the GPU. Such inefficiencies arise because con-
ventional mixed-precision training requires synchronization
of overflow in the gradients before the optimization step. Fig-

if then

end

1

2

3

4

5

6

7

Figure 3: Optimization step of
mixed-precision training.

Ti
m

e
(s

)

param_to_fp16

param_update

unscale_check

grad_to_fp32

GPU
computation

Optimization
step

15

10

5

0

Figure 4: Optimiza-
tion step breakdown.

ure 3 describes its detailed mechanism. The FP16 gradients
transferred from the GPU to the CPU are first converted into
FP32 (Line 1), unscaled, and checked for overflow (Line 2).
The results of each stage’s gradients are synchronized across
all stages (Line 3). If overflow is detected at any stage, an
invalid loss scale was used during that training iteration. Thus,
the optimizer skips the parameter update. Otherwise, all gra-
dients are used to update the parameters, ensuring numerical
stability (Lines 4-7). Thus, the explicit synchronization of
overflow prevents Mobius from processing the optimization
steps of different stages asynchronously.

Unfortunately, the optimization steps can consume a sub-
stantial amount of time on the CPU. Figure 4 compares the
time taken by the GPU’s computation and the CPU’s optimiza-
tion steps during Mobius’s training, with a breakdown into
functions in Figure 3. Although these functions primarily rely
on element-wise operations with low computational intensity,
they can add significant idle times to GPUs when not over-
lapped with the GPU’s computation. As a result, GPUs and
CPUs cannot achieve high utilization simultaneously, limiting
the benefits of hybrid GPU-CPU training.

Building on this insight, we further explore pipelining the
optimization steps on the CPU with the execution on the GPU,
thereby improving both their utilization and mitigating the
overhead of the CPU optimization steps.

2.4 Related Work

Different pipeline schedules. A key objective of pipeline
schedules is to reduce the bubble ratio. PipeDream [30] skips
periodic pipeline flushes and injects more micro-batches into
the pipeline to achieve an almost zero bubble ratio. How-
ever, this requires updating the parameters after each micro-
batch’s backward pass and storing additional versions to en-
sure parameter consistency between the forward and back-
ward passes of the same micro-batch. Bidirectional pipelines,
such as Chimera [20] and MixPipe [55], operate two pipelines
in opposite directions to reduce bubbles, but this requires du-
plicating parameters across each two GPUs. Interleaved-stage
approaches, like Megatron [32] and Hanayo [23], partition a
model to assign multiple stages per GPU, reducing the bubble

4

time while increasing the amount of communication.

Leveraging heterogeneous devices. Existing proposals sup-
port offloading model states [37,44] and residual states [1,10,
19, 22, 43, 45] to non-GPU memory only for training with a
single GPU. Among these, ZeRO-Offload [44] offloads opti-
mizer states to the CPU memory and executes optimization
steps on the CPU. ZeRO-Infinity [42] and Mobius [8] ex-
tend this to support fully sharded data parallelism [41] and
pipeline parallelism [12], respectively. ZeRO-Offload++ [50]
and Deep Optimizer States [26] perform optimization steps
on both the GPU and CPU.

3 The Design of SysX

This section describes the pipelining mechanism of SysX. It
consists of two pipelines: a GPU pipeline and a GPU-CPU
pipeline. The GPU pipeline’s key idea is to assign the forward
and backward passes of the same stage to different GPUs
(decoupled pass assignment) for better pipeline scheduling.
The GPU-CPU pipeline assigns the optimization steps to the
CPU and executes them in parallel with the GPU pipeline for
better utilization of heterogeneous resources.

3.1 GPU pipeline
In ordinary pipelining mechanisms, a micro-batch’s forward
and backward passes are assigned together to the same GPU.
Figure 5(a) gives the pipeline diagram of a typical training
pipeline with two model stages, S0 and S1, where the forward
passes (f0 and f1) and backward passes (b0 and b1) of S0
and S1 are mapped to two different GPUs, GPU0 and GPU1,
respectively. Suppose that we have two micro-batches in a
mini-batch. At time t1 for a micro-batch m0, GPU0 waits for
GPU1 to finish b0

1 because the gradients computed by b0
1 are

necessary to proceed b0
0. Unfortunately, GPU1 executes f1

for all micro-batches first, executes b0
1, and finally transfers

the gradients GPU0 waits for at time t2. As a result, GPU0
remains idle from t1 to t2.

Decoupled pass assignment. SysX GPU pipeline is based
on the observation that the pipeline bubbles can be reduced
if a single micro-batch’s forward and backward passes for
the same stage are assigned to different GPUs. Figure 5(b)
is an example of a decoupled pass assignment. While f0 and
f1 are mapped to GPU0 and GPU1, respectively, b0 and b1
are mapped to GPU1 and GPU0, respectively. As GPU0 is
assigned b1 instead of b0, b0

1 can start immediately at GPU0
at t2. We see less bubbles in Figure 5(b) than the ordinary
pipeline in Figure 5(a).

Fetching parameters from non-GPU memory. With the
decoupled approach, each GPU has to store all parameters
for the stages assigned to it. For example, each GPU0 and
GPU1 has to store the parameters Ψ0 and Ψ1 of all stages

Bubble Forward pass Backward pass

!"#!

!"#"

Time

$!%!

$". %"

'! '" '#

'! '" '#

%!! %!"

%"! %"" $"! $""
$!! $!"

$"%!

$!. %"

%!! %!"

%"! %""
$"! $""

$!! $!"

'!

%!! %!"

%"! %""
$!,"!$","%! $!,"

$",!%! $!,!

$","! $",""

$",!! $",!" $!,!! $!,!"
$!,""

!"#!

!"#"

!"#!

!"#"

'" '# '%

𝐺𝑃𝑈!

𝐺𝑃𝑈"

		𝑏!		𝑓!

		𝑏". 	𝑓"

𝑡! 𝑡" 𝑡#

𝑓!! 𝑓!"

𝑓"! 𝑓"" 𝑏"! 𝑏""

𝑏!! 𝑏!"

(a) Pass assignment in an ordinary pipeline.

𝑡! 𝑡" 𝑡#

		𝑏"		𝑓!

		𝑏!. 	𝑓"

𝑓!! 𝑓!"

𝑓"! 𝑓""

𝑏"! 𝑏""

𝑏!! 𝑏!"

𝐺𝑃𝑈!

𝐺𝑃𝑈"

(b) Decoupled pass assignment.

𝑡!

𝑓!! 𝑓!"

𝑓"! 𝑓""

𝑏!,"!		𝑏","		𝑓! 		𝑏!,"

		𝑏",! 		𝑏!,!

𝑏","! 𝑏",""

𝑏",!! 𝑏",!" 𝑏!,!! 𝑏!,!"

𝑏!,""𝐺𝑃𝑈!

𝐺𝑃𝑈"

𝑡" 𝑡$ 𝑡%

		𝑓"

(c) Fine-grained backward stage partitioning.

Figure 5: SysX GPU pipeline optimizations. For simplicity,
we omit the data transfer time between GPUs. Arrows depict
dependence between the passes.

S0 and S1 in its memory. However, when parameters are of-
floaded to non-GPU memory (e.g., the CPU memory), which
is a common setting when training large models under GPU
memory pressure, the same parameters can be fetched to dif-
ferent GPUs without permanently storing them redundantly
on different GPUs’ memory. Moreover, SysX mitigates the
overhead of fetching parameters from non-GPU memory by
prefetching in an overlapped manner with GPU computation.
SysX makes a GPU only keep the GPU memory spaces for
the current computation and the parameters being prefetched
instead of storing all parameters for the stages assigned to the
GPU. For example, consider Figure 5(b). At t0, GPU0 starts
to fetch Ψ1 required for b1. Similarly, GPU1 starts to fetch
Ψ0 at t1. GPU0 also frees Ψ0 as soon as f0 finishes at t2.

Activation recomputation. A problem with the decoupled
pass assignment in Figure 5(b) is that for all micro-batches,
all activations of f1 generated at GPU1 have to be transferred
to GPU0 to perform b1 and vice versa for f0. To solve this
problem, we adopt activation recomputation [5, 13, 17, 18].
Activation recomputation is a common setting when training
large models under GPU memory pressure. For example, at
time t2 in Figure 5(b), activation recomputation allows only
the activation checkpoint of S1 to be transferred from GPU1

5

to GPU0 to perform b0
1 instead of all activation tensors of

S1 including intermediate activation tensors generated from
performing f 0

1 .

Fine-grained backward stage partitioning. However, as
shown in Figure 5(b), when the execution times of the for-
ward and backward passes differ, it incurs pipeline bubbles.
Based on this observation, we decompose backward stages
into finer granularity to minimize the bubbles by balancing
the execution times. Specifically, the backward pass bi for
model stage Si can be decomposed into d backward passes, as
shown in Equation 4 so that each bi,k computes the backward
pass of |Si|/d Transformer blocks:

bi = bi,0 ◦bi,1 ◦ · · · ◦bi,d−1. (4)

As bi,k only requires a portion of Si’s parameters for its com-
putation (i.e., 1/d of Ψi), we denote such portion as Ψi,k.
Figure 5(c) is the result of decomposing the backward stage
in Figure 5(b) into two fine-grained backward stages. Similar
to Figure 5(b), f0 and f1 are mapped to GPU0 and GPU1,
respectively. However, b1,1 and b0,1 are mapped to GPU0, and
b1,0 and b0,0 are mapped to GPU1. At t3, GPU1 can start b0

1,0
immediately, reducing bubbles. Note that GPU0 starts to fetch
Ψ1,1 and Ψ0,1 at t0 and t2, respectively. GPU1 starts to fetch
Ψ1,0 and Ψ0,0 at t1 and t3, respectively.

Another effect of finer-grained backward stages is that it
reduces the GPU memory usage by 1/d at the cost of in-
creasing the number of activation checkpoint transfers by up
to ×d. However, the number of activation checkpoint trans-
fers does not strictly scale by factors of d. This is because,
while the forward pass fi on Si generates activation check-
points for Si,0, · · · ,Si,d−1 required for the backward passes
bi,0, · · · ,bi,d−1, those activation checkpoints for the backward
passes mapped to the same GPU as fi do not need to be trans-
ferred. For example, Figure 5(c) requires the same number of
activation checkpoint transfers as in Figure 5(b) because while
b1,1 and b0,0 require activation checkpoint transfers from an-
other GPU, b1,0 and b0,1 do not. Compared to the reduced
bubbles and GPU memory savings, this results in marginal
communication cost, which will be further optimized next.

Asynchronous checkpoint communication. We denote the
activation checkpoint required for the recomputation during
b j

i,k as c j
i,k. Checkpoints c j

i,0, · · · ,c
j
i,d−1 are generated during

f j
i . Each backward stage requires a checkpoint, while not

all of them should be sent from other GPUs. For example,
Figure 6 focuses on the relationship between f 0

0 and b0
0,0,

b0
0,1 of Figure 5(c). GPU0 performs f 0

0 , which is micro-batch
m0’s forward pass on S0. f 0

0 generates checkpoints c0
0,0 and

c0
0,1, which are used during the recomputation of b0

0,0 and
b0

0,1, respectively. c0
0,0 and c0

0,1 are depicted as red and orange
circles, respectively. As b0

0,1 is also assigned to the same
GPU0, c0

0,1 needs to be saved only on the memory of GPU0

𝑡! 𝑡"

𝑓!! 𝑓!"

𝑓"! 𝑓""

𝑏!,"!𝑏","! 𝑏",""

𝑏",!! 𝑏",!" 𝑏!,!! 𝑏!,!"

𝑏!,""𝐺𝑃𝑈!

𝐺𝑃𝑈"

𝑡$ 𝑡%

𝒄𝟎,𝟏𝟎𝒄𝟎,𝟎𝟎

forward
recompute

Time

Figure 6: Asynchronous communication of checkpoints gen-
erated by the forward pass of stage S0 for micro-batch m0
from Figure 5(c). Red and orange circles are the checkpoints
generated by the forward pass of stage S0 for micro-batch
m0, required by the backward pass of fine-grained stages S0,0
and S0,1 for m0, respectively. Only the red circle is sent asyn-
chronously from GPU0 to GPU1 at t0 and used at t3.

until it is used at time t2. However, c0
0,0 should be sent from

GPU0 to GPU1 before it is used at time t3.
A naïve way to transfer c0

0,0 from GPU0 to GPU1 would be
to send and receive at time t3 immediately before it is used
for recomputation. In such a case, checkpoint communica-
tion lies on the critical path of the GPU pipeline along with
the activation and gradient communication, adding a signif-
icant communication overhead. Instead, SysX transfers c0

0,0
as soon as possible (at t0) after c0

0,0 is ready, overlapping its
transfer with independent computations. This mechanism is
enabled through asynchronous communication, which allows
data transfer between GPUs to be initiated without waiting
for completion. Hence, GPU1 can use c0

0,0 during b0
0,0 without

waiting, as t3 − t0 provides sufficient time for the checkpoint
to arrive.

3.2 GPU-CPU pipeline

As explained in Section 2.3, in the hybrid GPU-CPU train-
ing [25,26], CPU optimization steps do not overlap with GPU
computations, limiting its benefits. Figure 7(a) illustrates such
a case on top of SysX’s optimized pipeline with decoupled
pass assignment and fine-grained backward stage partition-
ing, using the same setting of Section 3.1. At time t0, GPU0
finishes b1,1 for all micro-batches and offloads the accumu-
lated gradients to the CPU memory. The same process occurs
for b0,1 on GPU0 at t2, and b1,0 and b0,0 on GPU1 at t1 and
t3, respectively. Then, all offloaded gradients are validated
for numerical stability, and the results are synchronized at
t3. If no overflows are found, the CPU proceeds by updat-
ing the parameters of all stages. The GPUs remain idle until
all optimization steps are complete at t4 to use the updated
parameters for the next training iteration.

6

Bubble Forward pass Backward pass

Time

Optimization step

𝑓!! 𝑓!"

𝑓"! 𝑓""

𝑏!,"!𝑏","! 𝑏",""

𝑏",!! 𝑏",!" 𝑏!,!! 𝑏!,!"

𝑏!,""

𝐶𝑃𝑈

𝑓!"

𝑓"!

𝐺𝑃𝑈!

𝐺𝑃𝑈"

𝑓!!

𝑡$ 𝑡%

𝑜","𝑜",!𝑜! ,"𝑜! ,!

𝑡! 𝑡" 𝑡&

		𝑏","		𝑓! 		𝑏!,"

		𝑏",! 		𝑏!,!		𝑓"

(a) CPU optimizer with gradients overflow synchronization.

𝑓!! 𝑓!"

𝑓"! 𝑓""

𝑏!,"!𝑏","! 𝑏",""

𝑏",!! 𝑏",!" 𝑏!,!! 𝑏!,!"

𝑏!,"" 𝑓!"

𝑓"!

𝑜","𝑜",!𝑜! ,"𝑜! ,!

𝑡! 𝑡" 𝑡$ 𝑡% 𝑡&

𝐶𝑃𝑈

𝐺𝑃𝑈!

𝐺𝑃𝑈"

𝑓!!		𝑏","		𝑓! 		𝑏!,"

		𝑏",! 		𝑏!,!		𝑓"

(b) Asynchronous CPU optimizer.

Figure 7: SysX GPU-CPU pipeline optimization. oi,k denotes
the optimization step of stage Si,k. For simplicity, we omit the
data transfer time between GPUs and GPU and CPU. Arrows
depict dependence between the passes.

Asynchronous CPU optimizer. SysX’s optimizer shifts nu-
merical validations to a post-step process. Hence, a stage’s
CPU optimization step can proceed as soon as its GPU back-
ward passes are complete and the gradients are offloaded.
SysX overlaps the optimization step of a stage on the CPU
with the subsequent stage’s backward passes on the GPU to
reduce GPU idle times. At the same time, correctness is en-
sured through a rollback mechanism following the post-step
synchronization.

Consider Figure 7(b) that illustrates the CPU optimization
steps of SysX. While GPU0 offloads the gradients of b1,1 at
t0 similar to Figure 7(a), the CPU immediately executes stage
S1,1’s optimization step o1,1 at t0 as it bypasses synchroniza-
tion. The similar process is repeated for stage S1,0, S0,1, and
S0,0 at t1, t2, and t3, respectively, as if the stages’ backward
passes on the GPUs and the optimization step on the CPU
were pipelined. At t4, when all parameter updates are com-
plete, the gradients are finally checked for overflows, and the
results are synchronized. If any overflow is detected, SysX
performs a rollback of the updated parameters of all stages.

Bypassing and rollback mechanism. SysX pipelines the
CPU optimization steps altogether with the GPU’s computa-
tion by shifting the numerical validations after the parameter
updates. Each stage performs its own local validation (i.e.,
checking gradient overflows) without waiting for the synchro-
nization of results across all stages. Each stage executes its
optimization step based on its own validation results. Synchro-

nization finally occurs when all stages have completed their
optimization steps. If any stage fails its local validation, pa-
rameter updates of all stages are rolled back. Optimizers, such
as Adam [16] and AdamW [24], facilitate rollback without
additional memory overhead because their parameter update
steps are arithmetically reversible. While these rollbacks in-
troduce some overhead compared to conventional pre-step
validation, invalidations are rare during training and, therefore,
have minimal impact on the overall training time [38, 39].

The CPU optimizer pipelining in Figure 7(b) shows an
ideal scenario where the optimizer of each stage starts after
the preceding stage has been completed. In practice, the op-
timizer for a subsequent stage may start before the previous
stage has finished. Thus, each optimizer stage is processed in
parallel on the CPU using multi-threading. Furthermore, for
efficient pipelining, maximizing the overlap between the CPU
optimization step and the backward passes is crucial. This can
be done by selecting an appropriate number of micro-batches
for each stage, allowing the backward passes to hide the CPU
optimization step.

3.3 SysX Overall
Figure 8 illustrates the overall pipeline of SysX with Ng = 4
GPUs, Nm = 4 micro-batches, Ns f = 8 forward stages, and
Nsb = 16 backward stages. Comparing SysX and Mobius in
Figure 8 and Figure 2 with identical training settings, their
bubble ratios are 25% and 47%, respectively, showing the
benefit of SysX. There are two major reasons for this. One is
that pipeline bubbles at the beginning of the backward passes
are eliminated in SysX. The other is that CPU optimization
steps are overlapped with GPU computation in SysX.

SysX further optimizes Mobius based on two key obser-
vations. One is that the coupled pass assignment mentioned
in Section 2 is unnecessary when pipelining with offloading
and activation recomputation. The other is that CPU opti-
mization steps can operate in parallel by bypassing numerical
validation.

4 Implementation

SysX is implemented on top of the Megatron-LM [33]. We
modify its pipeline schedule, implement offloading, and inte-
grate CPU optimization steps.

Pipeline schedule. SysX implements its pipeline sched-
ule using separate CUDA streams for CPU-to-GPU data
transfer, GPU computation, and GPU-to-CPU data transfer.
Prefetching the next stage, performing forward/backward
computations of the current stage, and offloading the gra-
dients of the previous stage are thus processed in parallel.
They are synchronized using CUDA events. While GPU-
GPU communication of output activations and input gradi-
ents are sent and received synchronously, communication of

7

Bubble Forward	pass Backward	pass

Time

Parameters	transfer
(CPU	to	GPU)

Gradients	transfer
(GPU	to	CPU)

Optimization	step
(CPU)

𝐺𝑃𝑈!

𝐺𝑃𝑈"

𝐺𝑃𝑈#

𝐺𝑃𝑈$

	"!,#$ 	"!,## 	"!,#% 	"!,#& 	"',#$ 	"',## 	"',#% 	"',#& 	"&,#$ 	"&,## 	"&,#% 	"&,#& 	"#,#$ 	"#,## 	"#,#% 	"#,#&

	"!,$$ 	"!,$# 	"!,$% 	"!,$& 	"',$$ 	"',$# 	"',$% 	"',$& 	"&,$$ 	"&,$# 	"&,$% 	"&,$& 	"#,$$ 	"#,$# 	"#,$% 	"#,$&

	"(,#$ 	"(,## 	"(,#% 	"(,#& 	"),#$ 	"),## 	"),#% 	"),#& 	"%,#$ 	"%,## 	"%,#% 	"%,#& 	"$,#$ 	"$,## 	"$,#% 	"$,#&

	"$,$$ 	"$,$# 	"$,$% 	"$,$&	"%,$$ 	"%,$# 	"%,$% 	"%,$&	"),$$ 	"),$# 	"),$% 	"),$&	"(,$$ 	"(,$# 	"(,$% 	"(,$&

		#$$			#$#			#$%			#$& 		#)$			#)#			#)%			#)&

		##$			###			##%			##& 		#'$			#'#			#'%			#'&

		#%$			#%#			#%%			#%& 		#($			#(#			#(%			#(&

		#&$			#&#			#&%			#&& 		#!$			#!#			#!%			#!&

$$

$#

$%

$& $!

$(

$'

$) %#,#

%#,$

%$,#

%$,$&$,$

&$,#

&#,$

&#,#%&,#

%&,$

%%,#&%,#

&&,$

&&,#$#,#

$#,$

$$,#%),#

%',$

%',#&',#$&,#%!,#&!,#$',#$!,#

$!,$

$(,#

$(,$ $),$ %(,$&(,$

$',$

$),# %(,#&(,# &),#$%,#

$&,$ &',$&!,$ %!,$

&),$$%,$ %),$ $$,$ &%,$ %%,$

Figure 8: SysX pipeline schedule with four GPUs. GPUi denotes the ith GPU. f j
i denotes the ith forward stage’s forward pass

and b j
i,k denotes the finer-grained (di+ k)th backward stage’s backward pass on the jth micro-batch. Note that a backward pass

has identical workload with a forward pass. Each forward/backward pass is distinguished by 2 and 4 different colors, respectively,
to indicate that it belongs to a different forward/backward stage assigned to the same GPU. For example, GPU0’s forward passes
on forward stage S0 and S4 are colored blue and sky blue, and backward passes on backward stage S7,1, S5,1, S3,1, and S1,1 are
colored in light yellow, yellow, orange, and brown. pi (or pi,k) and gi,k denote CPU to GPU parameters transfer and GPU to CPU
gradients transfer of forward stage Si (or backward stage Si,k) and backward stage Si,k, respectively. oi,k denotes the optimization
step of backward stage Si,k executed on the CPU.

activation checkpoints uses asynchronous P2P operations in
torch.distributed. A checkpoint communication sched-
ule is constructed so that both sender and receiver GPUs call
isend and irecv at the same timestep, respectively, with the
receiver GPU later synchronizing on the completion status of
the returned handle. This checkpoint communication sched-
ule is constructed once during the initialization phase and
cached, as all training iterations use the same schedule.

Offloading. A common practice for multi-GPU training is
launching one process for each GPU. When using CPU of-
floading, each GPU process can independently allocate CPU
memory buffers to store the offloaded data. However, in SPipe,
a single stage’s forward and backward passes are executed on
different GPUs, necessitating that multiple processes share
the same model stage.

To address this, we allocate POSIX shared memory [36]
for each node and adjust the tensor pointers to reference
this shared memory. The offloaded parameters are physically
shared and virtually mapped to the GPU processes assigned.
Specifically, a GPU process responsible for a backward stage
bi allocates space for Ψi in the shared memory while another
GPU process requiring Ψi for its forward stage fi sets its
pointers to the corresponding region in the shared memory.

For multi-node training, Remote Direct Memory Access
(RDMA) is used to fetch parameters stored in the shared
memory of a remote node. The shared memory size required
per node is the sum of memory space required for all Ψi of bi
stages assigned to GPUs within that node. We observe that
the memory space required for the model’s parameters (e.g.,
200GB for a model with 100 billion parameters, assuming

mixed-precision training) divided by the number of nodes
closely approximates the size of the shared memory per node.

CPU optimizer. We assign a separate CPU optimizer for each
stage using C++ threading [4]. We pass a CUDA event that
records the corresponding gradient offloading operation from
a PyTorch main thread to the CPU optimizer thread, and the
optimizer thread waits for the event completion before be-
ginning the asynchronous optimization steps at the CPU to
ensure correctness. Each CPU optimizer thread uses a CPU-
based Adam [16] implementation of DeepSpeed [29] that
leverages thread-level and instruction-level parallelism. We
modify it to include the event synchronization mechanism,
floating-point precision conversion, unscaling, and local nu-
merical validations. After all CPU optimizers are complete,
a post-step synchronization collects the local validation re-
sults, and rollback is triggered in case of invalidation. The
rollback leverages Adam’s arithmetic reversibility, and we im-
plement it by modifying the optimization step implementation
of DeepSpeed [29].

5 Evaluation

In this section, we evaluate SysX against existing approaches
to train LLMs under memory pressure. We further exam-
ine the effectiveness of our optimizations and analyze the
overheads of SysX, providing insights into its trade-offs and
performance benefits.

8

Table 1: Node configuration of the eight-node cluster.

Motherboard ASRock ROMED8-2T
CPU 1 x AMD 32-core EPYC 7452
Main Memory 8 x DDR4-2666 64GB
GPU 4 x NVIDIA Tesla V100 32GB PCIe
NIC 1 x Mellnox ConnectX-6 Infiniband HDR
PCIe 16 x Gen3 lanes per GPU
OS Ubuntu 20.04.4 LTS (kernel 5.4.0-100)
GPU Driver 550.54.15
CUDA Version 12.4

5.1 Evaluation Environment

System configurations. Table 1 describes the system config-
uration for experiments. The cluster has eight nodes, targeting
LLM training in a small GPU cluster setup. Each node has
four NVIDIA Tesla V100 32GB GPUs connected through
16x PCIe Gen3, an AMD 32-core CPU, 512GB main memory,
and an InfiniBand HDR NIC (200Gb/s).

Workloads. We use LLaMA2-based language models [49] of
eight different sizes: 10B, 19B, 30B, 40B, 52B, 69B, 88B, and
110B. Table 2 summarizes their configurations. Models are
trained using a varying number of nodes to reflect differences
in their size: the (10B, 19B), (30B, 40B), (52B, 69B), and
(88B, 110B) models are evaluated using 1, 2, 4, and 8 nodes,
respectively. We use mixed-precision training [28] and Open-
WebText [35] as the training dataset. We run five warmup
iterations and average the measurements from the subsequent
five iterations. Note that all experiments are conducted with
activation recomputation [5,13,17,18] because preserving all
activations results in GPU out-of-memory (OOM) errors even
for the smallest model size.

Variables. We vary model sizes, sequence lengths, and batch
sizes to capture diverse configurations used in practice. Model
size reflects the diverse scales of modern LLMs. Sequence
length (SEQ) influences the model’s ability to comprehend
context. Batch size, a primary determinant of training effi-
ciency, is also explored. In pipeline parallelism, the input
mini-batch is divided into micro-batches. Increasing the size
of micro-batches enhances GPU computational efficiency but
is constrained by memory capacity. To address this, we scale
the global mini-batch size by increasing the number of micro-
batches. Both micro-batch size (MBS) and global mini-batch
size (GBS) are investigated as variables in our experiments.

Baselines. Our baselines for comparison are Mobius [8] and
Megatron [32]. Megatron is a widely used framework for
training transformer models using an interleaved 1F1B (one
forward, one backward) schedule. However, since it does
not support offloading, even our smallest workload, the 10B
model, encounters out-of-memory (OOM) on the GPUs. Thus,
we extend its implementation to support CPU offloading. Mo-
bius is a state-of-the-art pipeline framework with an inter-
leaved AFAB (all forward, all backward) schedule optimized

Table 2: Configurations of the LLaMA-2 models used in the
evaluation. Model sizes are on a scale of billion (B) parame-
ters. Columns l, d, dFFN, # KV heads, and # Nodes represent
the number of Transformer layers, hidden dimension size,
FFN layer’s hidden dimension size, number of KV heads, and
number of nodes used, respectively.

Model Size l d dFFN # KV heads # Nodes
10B 48 4,096 10,880 2 1
19B 48 5,632 14,976 4 1
30B 96 5,120 13,632 4 2
40B 96 5,888 15,680 4 2
52B 96 6,656 17,728 8 4
69B 96 7,680 20,480 8 4
88B 192 6,144 16,384 16 8

110B 192 6,912 18,432 16 8

for offloading all training states. All the techniques, Mobius,
Megatron, and SysX, offload parameters, gradients, and op-
timizer states to the CPU memory and exploits activation
recomputation to minimize GPU memory usage. Due to the
lack of public availability, we evaluate using our implementa-
tions of Mobius and offloading-extended Megatron. However,
we verify the completeness of our implementations in the
appendix. All experiments are conducted without incorporat-
ing any other parallelism strategies to contrast performance
differences solely in pipeline parallelism.

5.2 Comparison

Figure 9 shows the speedups of Megatron and SysX over
Mobius. In this experiment, we train all models in Table 2,
each using the corresponding # Nodes nodes, global mini-
batch size (GBS) of 16× # Nodes, fixed micro-batch size
(MBS) of two, and sequence lengths (SEQ) of 1024 and 2048.

Overall, SysX achieves, on average, the speedups of 1.26
and 1.51 over Mobius and Megatron, respectively. SysX out-
performs Mobius and Megatron across all cases. The perfor-
mance gain from the GPU pipeline and GPU-CPU pipeline
varies significantly with model sizes, sequence lengths, and
batch sizes. In addition, the AFAB schedule of Mobius and
SysX outperforms the 1F1B schedule of Megatron by ef-
ficiently hiding the offloading overhead. While Megatron
closely matches Mobius’s performance for large sequence
lengths, SysX continues outperforming Megatron.

Model sizes. Comparing two model sizes for each node con-
figuration with the same sequence length, the overall improve-
ments of SysX remain consistent regardless of the model size.
This is because, as the model grows, the time saved by reduc-
ing GPU pipeline bubbles and overlapping CPU optimization
steps increases proportionally with the total iteration time.
This demonstrates that SysX delivers consistent performance
improvements across varying model sizes.

Sequence lengths. In most cases, the speedup is larger for
smaller sequence lengths. This is because the computation re-

9

1.41 1.36 1.43 1.42 1.32 1.25 1.22 1.26 1.32
1.19 1.21 1.20 1.18 1.16 1.18 1.09

1.26

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048

10B 19B 30B 40B 52B 69B 88B 110B

Node = 1 / GBS = 16 # Node = 2 / GBS = 32 # Node = 4 / GBS = 64 # Node = 8 / GBS = 128 GEOMEAN

Sp
ee

du
p

ov
er

 M
ob

iu
s Mobius Megatron SPipe

SEQ
Model

Figure 9: Speedups of SysX and Megatron over Mobius.

quired for the forward and backward passes increases quadrat-
ically with sequence length while the optimization step re-
mains unaffected. As a result, the benefits of overlapping CPU
optimization steps diminish as sequence length increases. In
contrast, the GPU pipeline speedup remains constant because
the size of pipeline bubbles also increases quadratically with
sequence length.

Number of nodes and batch sizes. Due to the nature of
pipelining, the minimum required number of micro-batches
increases with the number of nodes. An increase in batch
size leads to longer GPU computation time and causes it
to dominate the total iteration time. Hence, the benefits of
overlapping CPU optimization steps are less evident in the
overall speedup. On the other hand, the speedup gained from
reducing the pipeline bubble time remains constant because
the pipeline depth also increases with the number of nodes
along with the batch size, maintaining a steady bubble ratio.

5.3 Effect of the Batch Size

SysX’s GPU pipeline effectively eliminates the bubbles in or-
dinary pipeline schedules. However, the performance benefit
from bubble reduction is sensitive to the batch size. We con-
duct experiments in two scenarios: scaling the micro-batch
size (MBS) and the global mini-batch size (GBS).

Scaling MBS. When the GBS is fixed, increasing MBS causes
the computation required per micro-batch to grow linearly
with MBS. Consequently, the size of pipeline bubbles also
increases. As a result, Mobius experiences larger bubbles and
a higher bubble ratio. This leads to an increase in the GPU
pipeline speedup for SysX, as it effectively minimizes these
bubbles. To analyze the individual effects of GPU pipeline
bubble reduction and CPU optimization step overlapping, we
break down the total speedup into the GPU pipeline speedup
and CPU optimizer speedup.

Figure 10 shows the results of MBS scaling. As the MBS
varies with 1, 2, 4, and 8, the total speedup of SysX over
Mobius also increases. They are, on average, 1.13, 1.17, 1.20,
and 1.26, respectively. Similarly, when the MBS varies with 1,
2, 4, and 8, the GPU pipeline speedup over Mobius becomes
at 1.00, 1.03, 1.07, and 1.12, respectively, validating larger
gains from the efficient pipeline schedule of SysX.

On the other hand, scaling the MBS has no impact on CPU
optimizer speedup because it does not affect the total GPU
computation time per iteration, and the overlapping time for
optimization steps remains unchanged. As the MBS scales
from 1, 2, 4, and 8, the CPU optimizer speedup over Mobius
remains constant with averages of 3.68, 3.66, 3.67, and 3.61,
respectively.

Additionally, SysX demonstrates its capability to train the
models with a larger MBS than Mobius because only SysX
successfully trained the 19B, 40B, and 69B models with an
MBS of 8. It is the result of less GPU memory consump-
tion during the backward pass caused by SysX’s fine-grained
backward-stage partitioning.

Scaling GBS. When the MBS is fixed, increasing the number
of micro-batches translates to a larger GBS. This increases
the overall execution time of the pipeline on a GPU while the
idle time consumed by the bubbles remains constant. Hence,
scaling the GBS results in a lower bubble ratio of Mobius
and eventually reduces GPU pipeline speedup of SysX. Fig-
ure 11 shows the results of GBS scaling. As the GBS scales
by factors of 1, 2, 3, and 4, the total speedup over Mobius
decreases. The average speedups are 1.32, 1.26, 1.22, and
1.19, respectively. Similarly, the GPU pipeline speedup over
Mobius also decreases. The average speedups are 1.15, 1.08,
1.04, and 1.05, respectively.

On the other hand, scaling GBS results in a better overlap
of the optimization step because the optimization step may
not overlap well with smaller GBS values. For example, in the
case of the 10B model, increasing the GBS values with 8, 16,
24, and 32 increases the average CPU optimizer speedup over
Mobius with 1.43, 2.49, 3.57, and 3.90, respectively. When
GBS = 24, the speedup stabilizes. We observe a saturation
point of CPU optimizer speedup exists in each model size,
which is when the time required to process the optimization
step of a stage on the CPU equivalents with the time required
to process the backward pass of all micro-batches of the stage.
For example, in 30B model, such a point is when the GBS
is scaled to 32. When such a saturation point is reached, all
optimization steps of the backward stages have already been
fully overlapped, leaving only the latest processed backward
stage to be run non-overlapped in SysX. As the GBS scales
by factors of 1, 2, 3, and 4, the average speedup of the CPU

10

0.9
1

1.1
1.2
1.3
1.4

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

10B 19B 30B 40B 52B 69B 88B 110B GMEAN

To
ta

l S
pe

ed
up

Model and Micro-batch Size (MBS)

M
ob

iu
sG

PU
 O

OM

M
ob

iu
sG

PU
 O

OM

M
ob

iu
s G

PU
OO

M

Bo
th

GP
U

OO
M

Bo
th

 G
PU

OO
M

(a) Total speedup over Mobius.

0.9
1

1.1
1.2

1.3

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

10B 19B 30B 40B 52B 69B 88B 110B GMEANGP
U

Pi
pe

lin
e

Sp
ee

du
p

Model and Micro-batch Size (MBS)

M
ob

iu
sG

PU
 O

OM

M
ob

iu
sG

PU
 O

OM

M
ob

iu
s G

PU
OO

M

Bo
th

GP
U

OO
M

Bo
th

 G
PU

OO
M

(b) GPU pipeline speedup over Mobius.

3

3.3
3.6

3.9
4.2

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

10B 19B 30B 40B 52B 69B 88B 110B GMEANCP
U

O
pt

im
ize

r S
pe

ed
up

Model and Micro-batch Size (MBS)

M
ob

iu
sG

PU
 O

OM

M
ob

iu
sG

PU
 O

OM

M
ob

iu
s G

PU
OO

M

Bo
th

GP
U

OO
M

Bo
th

 G
PU

OO
M

(c) CPU optimizer speedup over Mobius.

Figure 10: Effect of micro-batch size (MBS) scaling.

optimizer step increases with the values 2.38, 3.07, 3.22, and
3.68, respectively.

5.4 Effect of Various Optimizations

SysX proposes several optimization techniques to achieve
an efficient pipelining scheme. We analyze the impact of
these optimizations. As shown in Table 3, we decompose
the proposed optimizations into distinct steps and evaluate
various SysX configurations by incrementally incorporating
the proposed techniques.

We first compare the different optimization configurations
for a given model. Figure 12 illustrates the breakdown of the
iteration time per configuration. To distinctly evaluate the ef-
fect of each technique, we partition the training iteration time
into two components: the GPU time and the non-overlapping
CPU time. The GPU time refers to the time spent on for-
ward and backward computations, and the non-overlapping
CPU time represents the remaining time spent on the CPU
optimizer, excluding GPU computation. We see that 19B and
69B models have very different proportions of the GPU time
and non-overlapping CPU time. For the 19B model, the GPU
time constitutes 41.3%, while for the 69B model, GPU time
constitutes 77.8% of the iteration time on average. Thus, the
impact of each optimization configuration on the iteration
time varies largely between the two models.

Figure 12 shows that the optimizations progressively ap-
plied in CFG0, CFG1, and CFG2 reduce GPU time. This is
because the bubbles are reduced, and the extra communica-
tion overhead for activation checkpoints is effectively hidden.
CFG3 reduces the non-overlapping CPU time by overlapping

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

8 16 24 32 8 16 24 32 16 32 48 64 16 32 48 64 32 64 96 12
8 32 64 96 12
8 64 12
8

19
2

25
6 64 12
8

19
2

25
6

10B 19B 30B 40B 52B 69B 88B 110B GMEAN

To
ta

l S
pe

ed
up

Model and Global Mini-batch Size (GBS)

(a) Total speedup over Mobius.

0.9
1

1.1
1.2
1.3
1.4

8 16 24 32 8 16 24 32 16 32 48 64 16 32 48 64 32 64 96 12
8 32 64 96 12
8 64 12
8

19
2

25
6 64 12
8

19
2

25
6

10B 19B 30B 40B 52B 69B 88B 110B GMEAN

GP
U

Pi
pe

lin
e

Sp
ee

du
p

Model and Global Mini-batch Size (GBS)

(b) GPU pipeline speedup over Mobius.

1
1.5

2
2.5

3
3.5

4

8 16 24 32 8 16 24 32 16 32 48 64 16 32 48 64 32 64 96 12
8 32 64 96 12
8 64 12
8

19
2

25
6 64 12
8

19
2

25
6

10B 19B 30B 40B 52B 69B 88B 110B GMEAN

CP
U

O
pt

im
ize

r S
pe

ed
up

Model and Global Mini-batch Size (GBS)

(c) CPU optimizer speedup over Mobius.

Figure 11: Effect of global mini-batch size (GBS) scaling.

Table 3: Evaluated SysX optimization configurations

Config. SysX features included
CFG0 Decoupled pass assignment
CFG1 CFG0 with fine-grained backward stage partitioning
CFG2 CFG1 with optimized activation checkpoint communication
CFG3 CFG2 with asynchronous CPU optimizer
CFG4 CFG3 with ideal communication overhead

the CPU optimization step of the previous backward stage
with the current stage’s backward pass on GPUs. It also shows
that CFG3 closely matches the ideal performance, which is
CFG4, indicating that SysX implementation nearly reaches
the optimal pipeline and CPU optimizer performance.

5.5 Recomputation Overhead

SysX currently requires activation recomputation because of
the decoupled pass assignment, while Mobius can selectively
apply activation recomputation. While this paper focuses on
scenarios with insufficient aggregated GPU memory to store
all model states, including activations, we experiment with the
case for smaller models for which Mobius can train without
activation recomputation.

Figure 13 compares SysX (with recomputation) and Mo-
bius (without recomputation) to evaluate the overhead of acti-
vation recomputation in SysX. Experiments were conducted
on a single node using smaller models up to 5B parameters, a
sequence length of 2048, a micro-batch size of 1, and a global
mini-batch size of 16. SysX shows the speedup of 0.7 for the
400M model and 0.85 for the 1.4B model. However, Mobius
encounters GPU out-of-memory (OOM) for models larger

11

6.25 6.09 5.82 5.76 5.53

23.15 22.88 21.62 22.07 21.169.64 9.69 9.69 6.64 6.59

9.28 9.27 9.26
2.61 2.40

0

6

12

18

24

30

36

CFG0 CFG1 CFG2 CFG3 CFG4 CFG0 CFG1 CFG2 CFG3 CFG4

19B 69B

Ti
m

e
(s

ec
)

GPU time Non-overlapping CPU time

Figure 12: Impact of progressively adding system features to
SysX system configurations.

than 1.4B parameters, making direct comparisons for larger
models infeasible.

While SysX shows lower performance compared to Mo-
bius without recomputation for smaller models, these cases
are not the focus of this study, as models of such size do
not benefit significantly from offloading techniques. SysX
is designed to address memory and scalability challenges
in larger models, where recomputation becomes indispens-
able. This is particularly important for the AFAB (all forward,
all backward) schedule, where the absence of activation re-
computation would necessitate retaining activations for all
micro-batches in the GPU memory the backward pass com-
pletes.

5.6 Rollback Overhead

SysX bypasses optimizer synchronization while ensuring nu-
merical stability through post-validation. If validation fails,
parameters are reverted to their pre-update state using the
rollback algorithm. However, the rollback process does not
overlap with GPU computation, leading to some overhead.
The rollback overhead includes both the time spent on the
rollback and the time of the non-overlapping optimization
step that would have been skipped. Figure 14 shows the roll-
back overhead for a 10B model across different batch sizes,
demonstrating that the overhead varies significantly from 8%
to 53% depending on the batch size.

To assess the frequency of rollbacks during training, we
set the initial scale factor to 232 and trained a 10B model for
4,500 iterations, resulting in 20 rollbacks. Notably, rollbacks
occurred during the first 11 iterations, which could have been
avoided with a lower initial scale factor. Even in a conserva-
tive scenario where rollback occurs once every 100 iterations
for a batch size of 8, the resulting overhead is only 0.53%,
which is negligible compared to the speedup SysX achieves,
making the rollback overhead an acceptable trade-off in the
context of SysX’s overall performance benefits.

0
1
2
3
4
5
6
7
8
9

400M 1.4B 3B 5B

Ite
ra

tio
n

Ti
m

e
(s

ec
)

Model Size

Mobius (Recompute X)
SPipe (Recompute O)

G
PU

 O
O

M

G
PU

 O
O

M

Figure 13: Recomputation

0

0.1

0.2

0.3

0.4

0.5

0.6

8 16 32 64 128

Ro
llb

ac
k

O
ve

rh
ea

d

Batch Size

Figure 14: Rollback overhead

6 Conclusion

This paper presents SysX, a hybrid GPU-CPU pipelining
mechanism that enables efficient LLM training using pipeline
parallelism with offloading to overcome insufficient aggre-
gate GPU memory. SysX consists of two pipelines: a GPU
pipeline and a GPU-CPU pipeline. SysX’s GPU pipeline
presents a novel pipeline scheduling scheme that decouples a
stage’s forward and backward passes for the same micro-batch
to different GPUs by leveraging the CPU’s shared memory
and activation recomputation. It further optimizes its pipeline
stages through fine-grained model partitioning that balances
the passes’ execution times and asynchronous checkpoint
communication that hides the additional communication over-
head. SysX’s GPU-CPU pipeline presents an asynchronous
CPU optimizer that executes the optimization steps on the
CPU in parallel with the GPU pipeline stages. It efficiently
utilizes the CPU to overlap the CPU optimizer overhead while
guaranteeing the training correctness through a post-step vali-
dation and roll-back mechanism. Evaluation results of SysX
show that it outperforms Mobius and the offloading-extended
version of Megatron with average speedups of 1.26 and 1.51,
respectively. We will make SysX publicly available to broaden
the accessibility of large-scale model training.

References

[1] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son,
Shine Kim, Hakbeom Jang, Tae Jun Ham, and Jae W
Lee. FlashNeuron: SSD-enabled large-batch training
of very deep neural networks. In 19th USENIX Confer-
ence on File and Storage Technologies (FAST 21), pages
387–401, 2021.

[2] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel
and distributed deep learning: An in-depth concurrency
analysis. ACM Computing Surveys (CSUR), 52(4):1–43,
2019.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

12

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

[4] C++. std::thread. https://cplusplus.com/
reference/thread/thread/, 2024.

[5] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174, 2016.

[6] Daning Cheng, Shigang Li, Hanping Zhang, Fen Xia,
and Yunquan Zhang. Why dataset properties bound the
scalability of parallel machine learning training algo-
rithms. IEEE Transactions on Parallel and Distributed
Systems, 32(7):1702–1712, 2021.

[7] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei
Lin. DAPPLE: A pipelined data parallel approach for
training large models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 431–445, 2021.

[8] Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang,
Youyou Lu, and Jiwu Shu. Mobius: Fine tuning large-
scale models on commodity GPU servers. In Proceed-
ings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 2, pages 489–501, 2023.

[9] Swapnil Gandhi, Mark Zhao, Athinagoras Skiadopoulos,
and Christos Kozyrakis. ReCycle: Resilient training of
large DNNs using pipeline adaptation. In Proceedings
of the ACM SIGOPS 30th Symposium on Operating
Systems Principles, pages 211–228, 2024.

[10] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason
Lowe-Power, and Venkatesh Akella. AutoTM: Auto-
matic tensor movement in heterogeneous memory sys-
tems using integer linear programming. In Proceed-
ings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 875–890, 2020.

[11] Chien-Chin Huang, Gu Jin, and Jinyang Li. SwapAd-
visor: Pushing deep learning beyond the GPU memory
limit via smart swapping. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 1341–1355, 2020.

[12] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, and Zhifeng Chen.
GPipe: Efficient training of giant neural networks using
pipeline parallelism. Advances in neural information
processing systems, 32, 2019.

[13] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gho-
lami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer, and
Ion Stoica. Checkmate: Breaking the memory wall
with optimal tensor rematerialization. Proceedings of
Machine Learning and Systems, 2:497–511, 2020.

[14] Hai Jin, Bo Liu, Wenbin Jiang, Yang Ma, Xuanhua Shi,
Bingsheng He, and Shaofeng Zhao. Layer-centric mem-
ory reuse and data migration for extreme-scale deep
learning on many-core architectures. ACM Transac-
tions on Architecture and Code Optimization (TACO),
15(3):1–26, 2018.

[15] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scal-
ing laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[16] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jen-
nifer Brennan, Mike He, Jared Roesch, Tianqi Chen, and
Zachary Tatlock. Dynamic tensor rematerialization. In
International Conference on Learning Representations,
2021.

[18] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym,
Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation
recomputation in large transformer models. Proceed-
ings of Machine Learning and Systems, 5, 2023.

[19] Tung D Le, Haruki Imai, Yasushi Negishi, and Kiyokuni
Kawachiya. TFLMS: Large model support in
TensorFlow by graph rewriting. arXiv preprint
arXiv:1807.02037, 2018.

[20] Shigang Li and Torsten Hoefler. Chimera: Efficiently
training large-scale neural networks with bidirectional
pipelines. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pages 1–14, 2021.

[21] Zhenxing Li, Qiang Cao, Yajie Chen, and Wenrui Yan.
CoTrain: Efficient scheduling for large-model training
upon GPU and CPU in parallel. In Proceedings of the
52nd International Conference on Parallel Processing,
pages 92–101, 2023.

13

https://cplusplus.com/reference/thread/thread/
https://cplusplus.com/reference/thread/thread/

[22] Bo Liu, Wenbin Jiang, Hai Jin, Xuanhua Shi, and Yang
Ma. Layrub: layer-centric GPU memory reuse and data
migration in extreme-scale deep learning systems. In
Proceedings of the 23rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages
405–406, 2018.

[23] Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang
You. Hanayo: Harnessing wave-like pipeline parallelism
for enhanced large model training efficiency. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 1–13, 2023.

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations, 2019.

[25] Avinash Maurya, Jie Ye, M Mustafa Rafique, Franck
Cappello, and Bogdan Nicolae. Breaking the mem-
ory wall: A study of i/o patterns and GPU memory uti-
lization for hybrid CPU-GPU offloaded optimizers. In
Proceedings of the 14th Workshop on AI and Scientific
Computing at Scale using Flexible Computing Infras-
tructures, pages 9–16, 2024.

[26] Avinash Maurya, Jie Ye, M Mustafa Rafique, Franck
Cappello, and Bogdan Nicolae. Deep optimizer states:
Towards scalable training of transformer models using
interleaved offloading. In Proceedings of the 25th Inter-
national Middleware Conference, pages 404–416, 2024.

[27] Meta. LLaMA3. https://llama.meta.com/
llama3/, 2024.

[28] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh,
and Hao Wu. Mixed precision training. arXiv preprint
arXiv:1710.03740, 2017.

[29] Microsoft. DeepSpeed. https://www.deepspeed.
ai/, 2024.

[30] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. PipeDream: Gen-
eralized pipeline parallelism for DNN training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[31] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie
Chen, and Matei Zaharia. Memory-efficient pipeline-
parallel DNN training. In International Conference on
Machine Learning, pages 7937–7947. PMLR, 2021.

[32] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,

Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on GPU
clusters using Megatron-LM. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–15,
2021.

[33] NVIDIA. Megatron-LM. https://github.com/
NVIDIA/Megatron-LM, 2024.

[34] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Ca-
puchin: Tensor-based GPU memory management for
deep learning. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
891–905, 2020.

[35] Joshua Peterson, Stephan Meylan, and David Bourgin.
OpenWebText. https://github.com/jcpeterson/
openwebtext#openwebtext, 2019.

[36] POSIX. The Open Group Base Specifications.
https://pubs.opengroup.org/onlinepubs/
9699919799/, 2024.

[37] Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jin-
wen Xi, and Sujeeth Bharadwaj. Training large neural
networks with constant memory using a new execution
algorithm. arXiv preprint arXiv:2002.05645, 2020.

[38] Penghui Qi, Xinyi Wan, Guangxing Huang, and Min
Lin. Zero bubble pipeline parallelism. arXiv preprint
arXiv:2401.10241, 2023.

[39] Penghui Qi, Xinyi Wan, Guangxing Huang, and Min
Lin. Zero bubble (almost) pipeline parallelism. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

[40] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[41] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. ZeRO: Memory optimizations toward train-
ing trillion parameter models. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–16,
2020.

[42] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. ZeRO-Infinity: Break-
ing the GPU memory wall for extreme scale deep learn-
ing. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, pages 1–14, 2021.

14

https://llama.meta.com/llama3/
https://llama.meta.com/llama3/
https://www.deepspeed.ai/
https://www.deepspeed.ai/
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/jcpeterson/openwebtext#openwebtext
https://github.com/jcpeterson/openwebtext#openwebtext
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/

[43] Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran
Jeon, and Dong Li. Sentinel: Efficient tensor migration
and allocation on heterogeneous memory systems for
deep learning. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 598–611. IEEE, 2021.

[44] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. ZeRO-Offload:
Democratizing billion-scale model training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pages 551–564, 2021.

[45] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W Keckler. vDNN: Vir-
tualized deep neural networks for scalable, memory-
efficient neural network design. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 1–13. IEEE, 2016.

[46] Murray Shanahan. Talking about large language models.
Communications of the ACM, 67(2):68–79, 2024.

[47] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[48] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
Aurelien Rodriguez, Armand Joulin, Edouard Grave,
and Guillaume Lample. LLaMA: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

[49] Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale,
Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu,
Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng

Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie
Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. LLaMA
2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[50] Guanhua Wang, Masahiro Tanaka, Xiaoxia Wu,
Lok Chand Koppaka, Samyam Rajbhandari,
Olatunji Ruwase, and Yuxiong He. DeepSpeed
ZeRO-Offload++: 6x higher training throughput
via collaborative CPU/GPU twin-flow. https:
//github.com/microsoft/DeepSpeed/tree/
offloadppnews/blogs/deepspeed-offloadpp,
2024.

[51] Yang You, Jonathan Hseu, Chris Ying, James Demmel,
Kurt Keutzer, and Cho-Jui Hsieh. Large-batch training
for LSTM and beyond. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16, 2019.

[52] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, San-
jiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James
Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch
optimization for deep learning: Training BERT in 76
minutes. arXiv preprint arXiv:1904.00962, 2019.

[53] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel,
and Kurt Keutzer. ImageNet training in minutes. In
Proceedings of the 47th International Conference on
Parallel Processing, pages 1–10, 2018.

[54] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and
Luke Zettlemoyer. OPT: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068,
2022.

[55] Weigang Zhang, Biyu Zhou, Xuehai Tang, Zhaoxing
Wang, and Songlin Hu. MixPipe: Efficient bidirectional
pipeline parallelism for training large-scale models. In
2023 60th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2023.

[56] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren,
Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun
Nie, and Ji-Rong Wen. A survey of large language mod-
els. arXiv preprint arXiv:2303.18223, 2023.

15

https://github.com/microsoft/DeepSpeed/tree/offloadppnews/blogs/deepspeed-offloadpp
https://github.com/microsoft/DeepSpeed/tree/offloadppnews/blogs/deepspeed-offloadpp
https://github.com/microsoft/DeepSpeed/tree/offloadppnews/blogs/deepspeed-offloadpp

[Appendix] SysX: System for Training under Memory
Constraints

1 Validation of Baseline Implementation

In Section 5 Evaluation, the baselines are Mobius [1] and offloading-extended Megatron [3]. Due to
the lack of public availability, we compare using our implementations for both. For SysX, Mobius,
and Megatron, we modify the widely used Megatron-LM [4] framework to implement individual
pipeline schedules. To efficiently leverage offloading to the CPU memory, all use separate CUDA
streams for CPU-to-GPU data transfer, GPU computation, and GPU-to-CPU data transfer. We in-
tegrate CPU Adam implementation of DeepSpeed [2] in the CPU optimizer. Mobius and Megatron
maintain a single CPU optimizer for each GPU that first performs pre-step synchronization and
then executes all optimization steps for all its assigned stages. In contrast, SysX assigns a separate
CPU optimizer thread to each backward stage to execute the optimization steps in parallel with
the GPU pipeline stages and finally performs post-step synchronization and roll-back if necessary.

We demonstrate that each baseline performs as expected using profiled results obtained from
NVIDIA Nsight Systems. We show the results for a 19B model, which is one of the LLaMA-2 models
used in the evaluation, run on a single node with four NVIDIA V100 32GB GPUs. We use a global
mini-batch size (GBS) of 8, a micro-batch size (MBS) of 1, and a sequence length of 2048.

Figure 1, Figure 2, and Figure 3 are the profiled results for Megatron, Mobius, and SysX, respec-
tively. The profiled results capture GPU forward/backward compute kernels and CPU optimization
steps. Each result shows the timeline of operations across four processes, as a single process is
launched for a GPU. Each operation is visualized using annotations from NVTX [5]. We capture
them over the same time period of 22 seconds.

The annotations in the profiling results are interpreted as follows:

• Each process is denoted as Pi.

• Line 1 : Shows the utilization of CPU cores.

• Line 2 : Displays GPU kernels and memory transfer operations. Specifically, mint indicates
parameter prefetching, while pink represents gradient offloading. These data transfers are
effectively overlapped with GPU computations.

• Line 3 : Highlights forward passes in blue series and backward passes in yellow series. Notably,
the backward pass includes activation recomputation. The forward and backward passes of
different stages assigned to a single GPU are distinguished by different colors.

• Line 4 : Highlights CPU optimization step in green. In SysX, green indicates non-overlapping
CPU optimization step.

• Line 5 : Unique to SysX, which shows the asynchronous execution of optimizers for each
backward stage.

The profiled results confirm that both baselines operate as expected according to their intended
pipeline schedules, with data transfers effectively overlapped. We also verified that the model con-
verged to the same loss value using identical initial weights. We ensure the reliability of our compar-
ative analysis, as both baselines faithfully reflect the original designs and demonstrate correctness.

1

Forward	pass Backward	pass

Time

Parameters	transfer
(CPU	to	GPU)

Gradients	transfer
(GPU	to	CPU)

Optimization	step
(CPU)

③ 	𝑃! (GPU)

② 𝑃! (GPU)

④ 	𝑃! (CPU)

① CPU util

③ 	𝑃" (GPU)

② 𝑃" (GPU)

④ 	𝑃" (CPU)

③ 	𝑃# (GPU)

② 𝑃# (GPU)

④ 	𝑃# (CPU)

③ 	𝑃$ (GPU)

② 𝑃$ (GPU)

④ 	𝑃$ (CPU)

Figure 1: Profiled result of offloading-extended Megatron. It shows a clear interleaved 1F1B (one
forward, one backward) schedule, as expected for Megatron. Each GPU handles two forward stages
and two backward stages. It overlaps GPU-CPU data transfers with GPU computation. Due to the
nature of the 1F1B schedule, it requires frequent parameter prefetching for different stages, which
causes noticeable bubble times. The optimization steps do not overlap with the GPU pipeline, as
shown by the green squares, and there is negligible CPU utilization during the GPU computation.

Forward	pass Backward	pass

Time

Parameters	transfer
(CPU	to	GPU)

Gradients	transfer
(GPU	to	CPU)

Optimization	step
(CPU)

③ 	𝑃! (GPU)

② 𝑃! (GPU)

④ 	𝑃! (CPU)

① CPU util

③ 	𝑃" (GPU)

② 𝑃" (GPU)

④ 	𝑃" (CPU)

③ 	𝑃# (GPU)

② 𝑃# (GPU)

④ 	𝑃# (CPU)

③ 	𝑃$ (GPU)

② 𝑃$ (GPU)

④ 	𝑃$ (CPU)

Figure 2: Profiled result of Mobius. It shows the AFAB (all forward, all backward) schedule, where
GPU-CPU data transfers overlap with GPU computation, as expected for Mobius. Each GPU
handles two forward and two backward stages, with parameters of the next start being prefetched
at the start of the current stage. Mobius’s coupled pass assignment leads to bubble times, which
occur as expected. The optimization steps do not overlap with the GPU pipeline, as shown by the
green squares, and there is negligible CPU utilization during the GPU computation.

2

Time

Forward	pass Backward	pass Parameters	transfer
(CPU	to	GPU)

Gradients	transfer
(GPU	to	CPU)

Non-overlapping	optimization	step
(CPU)

① CPU util

③ 	𝑃! (GPU)

② 𝑃! (GPU)

④ 	𝑃! (CPU)

⑤	𝑃!
(CPU optimizers)

③ 	𝑃" (GPU)

② 𝑃" (GPU)

④ 	𝑃" (CPU)

⑤	𝑃"
(CPU optimizers)

③ 	𝑃# (GPU)

② 𝑃# (GPU)

④ 	𝑃# (CPU)

⑤	𝑃#
(CPU optimizers)

③ 	𝑃$ (GPU)

② 𝑃$ (GPU)

④ 	𝑃$ (CPU)

⑤	𝑃$
(CPU optimizers)

Figure 3: Profiled result of SysX. Each GPU are assigned two forward stages which are further
partitioned into six backward stages. Its GPU pipeline shows that eight micro-batches are first
pipelined across the first forward stage assigned to each GPU, followed by the second forward stage.
Then six different backward stages are pipelined similarly. These forward and backward passes
have similar execution time due to fine-grained backward stage partitioning, and the bubble times
are significantly reduced due to decoupled pass assignment. SysX also employs an asynchronous
CPU optimizer. The six optimizers, one for each backward stage, are executed independently. Each
optimization step includes event synchronization, floating-point precision conversion, unscaling, and
local numerical validations.

3

[1] Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang, Youyou Lu, and Jiwu Shu. Mobius: Fine
tuning large-scale models on commodity GPU servers. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 2, pages 489–501, 2023.

[2] Microsoft. DeepSpeed. https://www.deepspeed.ai/, 2024.

[3] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,
Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro,
Amar Phanishayee, and Matei Zaharia. Efficient large-scale language model training on GPU
clusters using Megatron-LM. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1–15, 2021.

[4] NVIDIA. Megatron-LM. https://github.com/NVIDIA/Megatron-LM, 2024.

[5] NVIDIA. NVTX. https://github.com/NVIDIA/NVTX, 2024.

4

https://www.deepspeed.ai/
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/NVTX

